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Abstract: In this paper, we propose a global exponential adaptive observer for a
class of uniformly observable nonlinear systems in order to jointly estimate miss-
ing states and unknown constant parameters. This class consists of cascade sub-
systems where every sub-system is associated with a subset of outputs. Moreover,
a full triangular structure is not assumed since the dynamics of some particular
states of each subsystem may depend on the whole state vector. Of fundamen-
tal importance, the global exponential convergence of the proposed observers was
shown to be guaranteed under the well known persistent excitation condition. The
gain of this observer involves a design function that has to satisfy some mild con-
ditions which are given. Different expressions of such a function are proposed. Of
particular interest, it is shown that adaptive high gain like observers and adaptive
sliding mode like observers can be derived by considering particular expressions
of the design function.
Keywords: Nonlinear system, High gain observer, Sliding mode, Adaptive ob-
server, Persistent excitation.

1 Introduction

During the last two decades, the adaptive observer design problem for MIMO non-
linear systems has received much attention in the literature and motivated a lot of
work, for adaptive control, or recently fault detection and isolation in dynamic sys-
tems. Various results are available for linear systems can be found in [13, 18]while
more recent results are reported in [22, 23]. Since the eighties, many results on
nonlinear systems have became available. For example, adaptive observers have
been proposed for a class of nonlinear systems which can be linearized with a
change of coordinates up to output injection in [1, 16, 17, 15]. Their applicability
is limited by the restrictive linearization condition. More recently,some more gen-
eral results on nonlinear systems have been reported in [19, 4, 2]. These methods
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do not require the considered nonlinear systems to be linearizable, instead, they
assume the existence of some Lyapounov function satisfying particular conditions.
They are not constructive methods in the sense in that there is no systematic way
for the design of the required Lyapounov function, and it is not known how to
systematically check their applicability to a given system. In a relatively recent
work [21], the authors proposed an adaptive observer for a class of single output
uniformly observable nonlinear systems admitting some high gain observer, but
further depending on unknown parameters. This consists in an extension of the ap-
proach initially proposed in [22] for MIMO linear time-varying systems. The main
advantage of this approach lies in both design and implementation simplicities.
In this paper, one proposes to extend this approach to a large class of uniformly ob-
servable nonlinear MIMO systems . The class of systems in which the subsystems
for each output has triangular dependence on the states of that subsystem itself
except its last states dynamic which can depend on the whole states of systems
is to be considered. To this end, one shall consider the following class of MIMO
nonlinear systems.

{
ẋ = Ax+g(u,x)+Ψ(u,x)ρ
y = Cx= x1 (1)

Then, one shall combine the approach adopted in [11] with those proposed in [23]
and [22] in order to design an adaptive nonlinear observer. The main character-
istics of the proposed observer lie in its simplicity and its capability to give rise
to different observers among which adaptive high gain like observers and adaptive
sliding mode like observers. Indeed, the gain of the state estimation as well as
that of the parameter adaptation involve a design function that has to satisfy some
mild conditions which are given. Different expressions of the design function are
proposed and it is shown that adaptive high gain like observers [3, 10, 11, 7] and
adaptive sliding mode like observers [20, 5, 6, 9] can be derived by considering
particular expressions of the design function. Of particular interest, the tuning of
the observer is achieved through the choice of a single parameter.
This paper is organized as follows. The next section presents the class of nonlinear
MIMO systems which has a triangular form for each block, the observer design
will be detailed and the observer equations are given. Different expressions of
the design function are given to emphasize the versatility of the proposed adaptive
observer in section 3.

2 Adaptive observer design

Consider a class of nonlinear MIMO systems which are equivalent by diffeomor-
phism to systems of the form:{

ẋ = Ax+g(u,x)+Ψ(u,x)ρ
y = Cx

(2) 
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where the statex=


x1

x2

...
xq

∈ IRn with xk =


xk

1
xk

2
...

xk
λk

∈ IRnk,xk
i ∈ IRpk k = 1, . . . ,q

and
p

∑
k=1

nk = n; the outputy =


y1

y2
...

yq

 ∈ IRp with yk ∈ IRpk, k = 1, . . . ,q and

q

∑
k=1

pk = p; A=

 A1
...

Aq

, Ak =


0 Ipk 0
...

...
0 . . . 0 Ipk

0 . . . 0 0

; C=

 C1
...

Cq

,

Ck =
[

Ipk 0 . . . 0
]
, the nonlinear fieldg(u,x) =


g1(u,x)
g2(u,x)

...
gq(u,x)

 ∈ IRn,

gk(u,x) =


gk

1(u,x)
gk

2(u,x)
...

gk
λk

(u,x)

 ∈ IRnk where fork = 1, . . . ,q, the elementgk
i denotesith

element ofkth nonlinear functiongk(u,x) and has the structural dependance on the
states:
• for 1≤ i ≤ λk−1

gk
i (u,x) = gk

i (u;x1,x2, . . . ,xk−1;xk
1,x

k
2, . . . ,x

k
i ;x

k+1
1 ,xk+2

1 , . . . ,xq
1) (3)

• for i = λk:
gk

λk
(u,x) = gk

λk
(u;x1,x2, . . . ,xq) (4)

ρ =


ρ1

ρ2

...
ρq

 ∈ Rm, with ρ
k =


ρk

1
ρk

2
...

ρk
m

 ∈ Rmk, k = 1, . . . ,q and
q

∑
k=1

mk = m.

ρ is the vector of unknown constant parameters.
Ψ(u,x) is n×m matrix such that:
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ΨT(u,x)=


Ψ1T

(u,x)
Ψ2T

(u,x)
...

ΨqT
(u,x)

 , ΨkT
(u,x)=


ΨkT

1 (u,x)
ΨkT

2 (u,x)
...

ΨkT

s (u,x)

 ,Ψk
s(u,x)=


Ψ1k

s (u,x)
Ψ2k

s (u,x)
...

Ψλkk
s (u,x)

 .

s = 1, . . . , mk andΨk
s(u,x) denotessth block of the matrixΨk(u,x) with:

Ψik
s = (u;x1,x2, . . . ,xk−1;xk

1,x
k
2, . . . ,x

k
i ;x

k+1
1 ,xk+2

1 , . . . ,xq
1), f or 1≤ i ≤ λk−1.

and it has the same structure likegk
i (u,x).

Our objective consists in designing adaptive observers to simultaneously estimate
the state and the unknown parameters. Such a design requires some assumptions
which will be stated in due courses. At this step, one assumes the following:
(A1) The functionsg(u,x) and Ψ(u,x) are globally Lipschitz with respect tox
uniformly in u.
(A2) The matrixΨ(u(t),x(t)) is uniformly bounded.

2.1 Observer design

Before giving our candidate observer, one introduces the following notations:
1) let ∆θ be the block diagonal matrix defined by:

∆k(θ) =


Ipk

1
θ

δk
Ipk

...
1

θ
δk(λk−1) Ipk

 (5)

whereθ ≥ 1 is a parameter design and theδk’s are defined as follows:

 δk =
q

∏
i=k+1

(λi −1)δ f or 1≤ k≤ q−1;

δq = δ ; δ > 0 is a real number.
(6)

2) let Λθ be the block diagonal matrix defined by:

Λk(θ) =


1

θ
σk

1
Ipk

...
1

θ
σk

λk

Ipk

 (7)

whereσk
i is given by:

σ
k
i = σ

k
1 +(i−1)δk f or i = 1, . . . ,λk;k = 1, . . . ,q (8)
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andσk
1 ,k = 1, . . . ,q are integers which are chosen as follows [8]:

σ
k
1 = (λ1−

1
2
)δ1− (λk−

1
2
)δk +(1− 1

2k−1) (9)

3) LetS
θ

δk be the unique solution of the algebraic Lyapunov equation :

θ
δkS

θ
δk +AT

k S
θ

δk +S
θ

δk Ak = CT
k Ck (10)

where

S
θ

δk =
1

θ δk
∆k(θ)Sk∆k(θ) (11)

whereAk andCk are given in system (2) . It can be shown that the explicit solution
of (10) is symmetric positive definite for everyθ > 0 and that :

Sk(i, j) = (−1)(i+ j)C j−1
i+ j−2Ipk f or 1≤ i, j ≤ nk where Cp

n =
n!

(n− p)!p!
(12)

In particular,S−1
k CT

k =
(

C1
nk

Ipk, C2
nk

Ipk, . . . , Cnk
nk

Ipk

)T
.

4) Let Ωθ be a the following matrix:

Ωk(θ) =


1

θ
εk
1

...
1

θ
εk
mk

 (13)

whereεk
j , are positive integers which are chosen such that each term of the matrix

∆k(θ)Ψk(u,x)Ω−1
k (θ) is a polynomial in1

θ
[14].

5) For anyξ k ∈ IRpkq, Let ϒk
ξ
(t) be apkq×mk matrix satisfying the following Or-

dinary Differential Equation (ODE):

ϒ̇k
ξ

= θ
δk

(
(Ak−S−1

1k CT
k Ck)ϒk

ξ
+∆k(θ)Ψk(u,ξ )Ω−1

k (θ)
)

(14)

6) Let Pk(t) be themk×mk symmetric matrix governed by the following differen-
tial equation:

Ṗk(t) =−θ
δk

(
Pk(t)ϒkT

ξ
(t)CT

k Ckϒk
ξ
(t)Pk(t)−Pk(t)

)
(15)

wherePk(t0)∈Rmk×Rmk is chosen symmetric positive definite and the matrixϒk
ξ
(t)

governed by (14).
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7)∀ξ k =


ξ k

1
ξ k

2
...

ξ k
λk

 ∈ IRnk k = 1, . . . ,q , setξ̄ k = Λk(θ)ξ k and let

K(ξ k) ∆= K(ξ 1k) =

 K1(ξ 1k)
...

Kq(ξ 1k)

 ∈ IRnk , k = 1, . . . ,q be a vector of smooth func-

tions satisfying the following property:
Let Dk be any compact subset of IRnk, then

∀ξ
k ∈ Dk : ξ̄ kT

CT
k CkK(ξ k) ≥ 1

2
ξ̄ kT

CT
k Ckξ

k (16)

The observer synthesis needs the following additional assumptions :
(A3) For anyξ ∈ IRnk, the matrixCkϒk

ξ
(t) is persistently exciting.

Since the matrix(Ak−S−1
1k CT

k Ck) is Hurwitz and each term of the matrix
∆k(θ)Ψk(u,x)Ω−1

k (θ) is polynomial in 1/θ, one can conclude that forθ ≥ 1 the
matrix ϒk

ξ
(t) is bounded and corresponding bounds do not depend onθ . Further-

more, one can show that under assumption (A6), the matrixPk(t) governed by (15)
is symmetric positive definite and that it is bounded from above and from below
and corresponding bounds do not depend onθ .

A candidate adaptive observer for system (2) is:

˙̂x(t) = Ax̂+g(u,x̂)+Ψ(u,x̂)ρ̂(t)−Θ∆−1(θ)
(
S−1 +ϒx̂(t)P(t)ϒT

x̂ (t)
)
CTC K(x̃)

(17)
˙̂ρ(t) = −Ω−1(θ)P(t)ϒT

x̂ (t)Θ2CTC K(x̃) (18)

and

˙̂xk(t) = Akx̂
k +gk(u,x̂)+Ψk(u,x̂)ρ̂k(t)

− θ
δk∆−1

k (θ)
(

S−1
k +ϒk

x̂(t)Pk(t)ϒkT

x̂ (t)
)

CT
k CkK(x̃k) (19)

˙̂ρk(t) = −θ
2δkΩ−1

k (θ)Pk(t)ϒkT

x̂ (t)CT
k CkK(x̃k) (20)

whereSΘ, ϒx̂(t), p(t), Ω(θ) and∆(θ) are respectively defined as follows:

S=

 S1
...

Sq

 , ϒx̂(t) =

 ϒ1
x̂(t)

...
ϒq

x̂(t)

 ,

P(t) =

 P1(t)
...

Pq(t)

 , Ω(θ) =

 Ω1(θ)
...

Ωq(θ)

 ,
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∆(θ) =

 ∆1(θ)
...

∆q(θ)

and

Θ = diag
(

θ δ1I1, θ δ2I2, . . . , θ δqIq
)

where the states

x̂ =


x̂1

x̂2

...
x̂q

 ∈ IR n, with x̂k =


x̂k

1
x̂k

2
...

x̂k
λk

 ∈ IR nk,

k = 1, . . . ,q and
q

∑
k=1

nk = n; x̃= x̂−x where x is the unknown trajectory of system

(2); ρ̂ =


ρ̂1

ρ̂2

...
ρ̂q

 ∈ IRm; K(x̃) is a rectangular matrix governed by equation (16);

u and y are respectively the input and the output of system (2).
Indeed, one states the following:

Theorem 2.1 Assume that system (2) satisfies Assumptions (A1) to (A3). Then,
system (17) is a global exponential adaptive observer for system (2).

The proof of this theorem is detailed in section.

2.2 Convergence analysis

Set the estimation error ˜x(t) = x̂(t)−x(t) andρ̃(t) = ρ̂(t)−ρ then there dynamic
equation are given by the following (for the raison of ambiguity, one omits the time
t for each variable).

˙̃x = Ax̃+g(u,x̂)−g(u,x)+Ψ(u,x̂)ρ̂ +Ψ(u,x)ρ
− Θ∆−1(θ)

(
S−1 +ϒx̂ P ϒT

x̂

)
CTCK(x̃)

= Ax̃+g(u,x̂)−g(u,x)+Ψ(u,x)ρ̃ +(Ψ(u,x̂)−Ψ(u,x))ρ

− Θ∆−1(θ)
(
S−1 +ϒx̂ P ϒT

x̂

)
CTCK(x̃) (21)

˙̃ρ(t) = −Θ2Ω−1(θ)P(t)ϒT
x̂ (t)CTCK(x̃) (22)
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where u is an admissible control such that‖u‖∞ ≤M, M > 0 is a given constant.

The considered class of nonlinear system (2)has the block triangular structure.
therefore, one has in particular fore k’th subsystem the following equation:

˙̃xk = Akx̃
k +gk(u,x̂)−gk(u,x)+Ψk(u,x)ρ̃k +

(
Ψk(u,x̂)−Ψk(u,x)

)
ρ

k

− θ
δk∆−1

k (θ)
(

S−1
k +ϒk

x̂ Pk ϒkT

x̂

)
CT

k CkK(x̃k) (23)

˙̃ρk(t) = −θ
2δkΩ−1

k (θ)Pk(t)ϒkT

x̂ (t)CT
k CkK(x̃k) (24)

one can easily check the following identities:
• Λk(θ)Ak∆−1

k (θ) = θ δkAk

• Λk(θ)∆−1
k (θ) = θ−σk

1 Ik ( Ik is thenk×nk identity matrix)

• CkΛ−1
k (θ) = θ σk

1Ck

• Ck∆−1
k (θ) = Ck

setx̄k = Λk(θ)x̃k andρ̄k = θ−(σk
1+δk) Ωk(θ) ρ̃k for k = 1, . . . ,q, one obtains:

˙̄xk = Λk(θ)AkΛ−1
k (θ)x̄k−θ

δkΛk(θ)∆−1
k (θ)S−1

k CT
k CkK(x̃k)

+ Λk(θ)
(

gk(u,x̂)−gk(u,x)
)

+Λk(θ)
(

Ψk(u,x̂)−Ψk(u,x)
)

ρ
k

+ θ
−σk

1 ∆k(θ)Ψk(u,x̂)Ω−1
k (θ)θ δk+σk

1 ρ̄
k−θ

δk−σk
1 ϒk

x̂Pk ϒkT

x̂ CT
k CkK(x̃k)

= θ
δkAkx̄

k−θ
δk−σk

1 S−1
k CT

k CkK(x̃k)+Λk(θ)
(

gk(u,x̂)−gk(u,x)
)

+ Λk(θ)
(

Ψk(u,x̂)−Ψk(u,x)
)

ρ
k +θ

δk∆k(θ)Ψk(u,x̂)Ω−1
k (θ)ρ̄k

− θ
δk−σk

1 ϒk
x̂Pk ϒkT

x̂ CT
k CkK(x̃k) (25)

˙̄ρk(t) = −θ
δkθ

−σk
1 Pk(t)ϒkT

x̂ (t)CT
k Ckk(x̃k) (26)

substituting (26)in (25), one obtains:

˙̄xk = θ
δkAkx̄

k−θ
δk−σk

1 S−1
k CT

k CkK(x̃k)+ϒk
x̂

˙̄ρk +Λk(θ)
(

gk(u,x̂)−gk(u,x)
)

+ Λk(θ)
(

Ψk(u,x̂)−Ψk(u,x)
)

ρ
k +θ

δk∆k(θ)Ψk(u,x̂)Ω−1
k (θ)ρ̄k (27)

Now, define:ηk = x̄k−ϒk
x̂ρ̄k where the matrixϒk

x̂ ∈Rnk×mk is governed by equation

   

Adaptive observer design for a class of nonlinear systems − T. Mâatoug et al.   491 

 

 



(14) with ξ , x̂. One can show that:

η̇k = ˙̄xk− ϒ̇k
x̂ρ̄

k−ϒk
x̂

˙̄ρk

= θ
δkAk(ηk +ϒk

x̂ρ̄
k)−θ

δk−σk
1 S−1

k CT
k CkK(x̃k)+Λk(θ)

(
gk(u,x̂)−gk(u,x)

)
+ Λk(θ)

(
Ψk(u,x̂)−Ψk(u,x)

)
ρ

k +θ
δk∆k(θ)Ψk(u,x̂)Ω−1

k (θ)ρ̄k− ϒ̇k
x̂ρ̄

k

= θ
δkAkηk +θ

δkS−1
k CT

k Ckϒk
x̂ρ̄

k−θ
δk−σk

1 S−1
k CT

k CkK(x̃k)

+ Λk(θ)
(

gk(u,x̂)−gk(u,x)
)

+Λk(θ)
(

Ψk(u,x̂)−Ψk(u,x)
)

ρ
k (28)

Then, we consider the Lyapunov functionsV1(η) = η̄TSη̄ =
q

∑
k=1

V1k(ηk) where

V1k(ηk) = ηkT
Skηk andS= diag(S1, . . . ,Sq) , V2(ρ̄) = ρ̄TP−1ρ̄ =

q

∑
k=1

V2k(ρk) and

V = V1 +V2.

V̇1k = 2η
T
k Skη̇k

= 2θ
δkη

T
k S1kAkηk +2θ

δkη
T
k CT

k Ckϒk
x̂ρ̄

k−2θ
δk−σk

1 η
T
k CT

k CkK(x̃k)

+ 2η
T
k SkΛk(θ)

(
gk(u,x̂)−gk(u,x)

)
+2η

T
k SkΛk(θ)

(
Ψk(u,x̂)−Ψk(u,x)

)
ρ

k

= −θ
δkV1k+θ

δkη
T
k CT

k Ckηk +2θ
δkη

T
k CT

k Ckϒk
x̂ρ̄

k−2θ
δk−σk

1 η
T
k CT

k CkK(x̃k)

+ 2η
T
k SkΛk(θ)

(
gk(u,x̂)−gk(u,x)

)
+2η

T
k SkΛk(θ)

(
Ψk(u,x̂)−Ψk(u,x)

)
ρ

k

(29)

According to(16), one obtains:

η
T
k CT

k CkK(x̃k) = x̄kT
∆−1

k (θ)CT
k CkK(x̃k)− (ϒk

x̂ρ̄
k)TCT

k CkK(x̃k)
= (∆−1

k (θ)x̄k)TCT
k CkK(x̃k)− (ϒk

x̂ρ̄
k)TCT

k CkK(x̃k)

= θ
−σk

1 (x̃k)TCT
k CkK(x̃k)− (ϒk

x̂ρ̄
k)TCT

k CkK(x̃k)

≥ 1
2

θ
−σk

1 x̃kT
CT

k Ckx̃
k− (ϒk

x̂ρ̄
k)TCT

k CkK(x̃k)

≥ 1
2

θ
−σk

1

(
Λ−1

k (θ)x̄k
)T

CT
k CkΛ−1

k (θ)x̄k− (ϒk
x̂ρ̄

k)TCT
k CkK(x̃k)

≥ 1
2

θ
σk

1 x̄kT
CT

k Ckx̄
k− (ϒk

x̂ρ̄
k)TCT

k CkK(x̃k)

≥ 1
2

θ
σk

1

(
ηk +ϒk

x̂ρ̄
k
)T

CT
k Ck

(
ηk +ϒk

x̂ρ̄
k
)
− (ϒk

x̂ρ̄
k)TCT

k CkK(x̃k)

≥ 1
2

θ
σk

1

(
η

T
k CT

k Ckηk +(ϒk
x̂ρ̄

k)TCT
k Ckϒk

x̂ρ̄
k
)

+ θ
σk

1 η
T
k CT

k Ckϒk
x̂ρ̄

k− (ϒk
x̂ρ̄

k)TCT
k CkK(x̃k) (30)
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Then,

V̇1k ≤ −θ
δkV1k+θ

δkη
T
k CT

k Ckηk +2θ
δkη

T
k CT

k Ckϒk
x̂ρ̄

k−2θ
δkη

T
k CT

k Ckϒk
x̂ρ̄

k

+ 2η
T
k S1kΛk(θ)

(
gk(u,x̂)−gk(u,x)

)
+2η

T
k S1kΛk(θ)

(
Ψk(u,x̂)−Ψk(u,x)

)
ρ

k

− θ
δk

(
η

T
k CT

k Ckηk +(ϒk
x̂ρ̄

k)TCT
k Ckϒk

x̂ρ̄
k
)

+2θ
δkθ

−σk
1 (ϒk

x̂ρ̄
k)TCT

k CkK(x̃k)

≤ −θ
δkV1k−θ

δk(ϒk
x̂ρ̄

k)TCT
k Ckϒk

x̂ρ̄
k +2θ

δkθ
−σk

1 (ϒk
x̂ρ̄

k)TCT
k CkK(x̃k)

+ 2η
T
k SkΛk(θ)

(
gk(u,x̂)−gk(u,x)

)
+2η

T
k SkΛk(θ)

(
Ψk(u,



where:

• αk = sup

{
∂gk

i

∂xk
j
(u,x);x∈ Rnand‖u‖∞ ≤M

}
andχ

k,i
l , j = 0 if ∂gk

i

∂xk
j
(u,x)≡ 0, χ

k,i
l , j = 1

otherwise,

• βk = sup

{
∂Ψk

i

∂xk
j
(u,x);x∈ Rnand‖u‖∞ ≤M

}
andε

k,i
l , j = 0 if ∂Ψk

i

∂xk
j
(u,x)≡ 0, ε

k,i
l , j = 1

otherwise.

as,|x̄l
j | ≤ |η l

j |+ |ϒsl
x̂k

ρ̄ l
s|, one obtains:

V̇k ≤ −θ
δkV1k−θ

δkθ
σk

1V2k

+ 2C2

√
λ k

max(Sk)
√

V1k

λk

∑
i=1

q

∑
l=1

λl

∑
j=1

mk

∑
s=1

ω
k,i
i, j θ

σ l
j−σk

i

(
|η l

j |+ |ϒsl
x̂k

ρ̄
sl|

)
(36)

with, ω
k,i
l , j = χ

k,i
l , j + ε

k,i
l , j .

Now, we have,

V̇k ≤ −θ
δkV1k−θ

δkθ
σk

1V2k

+ 2C2

√
λ k

max(Sk)
√

θ δkV1k

λk

∑
i=1

q

∑
l=1

λl

∑
j=1

ω
k,i
i, j θ

σ l
j−σk

i −
δk
2 −

δl
2

 √
θ δlV1l√

λ l
min(Sk)

+

√
θ δlV2l√

λ l
min(Pl )


(37)

whereλ l
min(Sl ) is the minimum eigenvalue ofSl andλ l

min(Pl ) is the minimum eigen-
value ofPl .
Now, according to the choice of theσk

1 ’s given by (9), one can show that the fol-
lowing condition is satisfied [8]:

i f ω
k,i
l , j = 1 then σ

l
j −σ

k
i −

δk

2
− δl

2
≤−ε < 0 (38)

whereε = δ

2q−1 > 0.
Now, assume thatθ ≥ 1, then, one gets:
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V̇k ≤ −θ
δkV1k−θ

δkθ
σk

1V2k

+ 2C2

√
λ k

max(Sk)
√

θ δkV1k

λk

∑
i=1

q

∑
l=1

λl

∑
j=1

ω
k,i
i, j θ

−ε

 √
θ δlV1l√

λ l
min(Sk)

+

√
θ δlV2l√

λ l
min(Pl )


≤ −θ

δkV1k−θ
δkθ

σk
1V2k

+ 2nkC2

√
λ k

max(Sk)
√

θ δkV1k θ
−ε

q

∑
l=1

λl

∑
j=1

 √
θ δlV1l√

λ l
min(Sk)

+

√
θ δlV2l√

λ l
min(Pl )


≤ −θ

δkV1k−θ
δkθ

σk
1V2k+2C3

√
λ k

max(Sk)
√

θ δkV1k θ
−ε

q

∑
l=1

λl

∑
j=1

√
θ δlV1l

+ 2C4

√
λ k

max(Sk)
√

θ δkV1k θ
−ε

q

∑
l=1

λl

∑
j=1

√
θ δlV2l

≤ −θ
δkV1k−θ

δkθ
σk

1V2k+2C5θ
−ε

√
θ δkV1k

√
θ δkV1

+ 2C6θ
−ε

√
θ δkV1k

√
θ δkV2

≤ −θ
δkV1k−θ

δkθ
σk

1V2k+2C5θ
−ε(θ δkV1k)

√
θ δkV1

+ 2C6θ
−ε

√
θ δkV1k

√
θ δkV2 (39)

Hence,

V̇ ≤ −
(

θ
δk −2C5θ

−ε
θ

δk

)
V1−θ

δkθ
σk

1V2 +2C6θ
−ε

√
θ δkV1

√
θ δkV2

(40)

Now, setV∗
1 = θ δk (1−2C5θ−ε)V1, V∗

2 = θ δkθ σk
1V2 andV∗ = V∗

1 +V∗
2 . Notice that

θ δV ≤V∗ ≤ θ δ1V, whereδ , θ δ1 are respectively given by (6). Then,

V̇ ≤ −(V∗
1 +V∗

2 )+
2C6θ−ε

√
1−2C52C6θ−ε

(V∗
1 +V∗

2 )

≤ −
(

1− 2C6θ−ε

√
1−2C5θ−ε

)
(V∗

1 +V∗
2 )

(41)

Now, choosingθ0 andδ such that
(

1− 2C6θ−ε

√
1−2C5θ−ε

)
> 0 one obtains:

V̇ ≤−
(
1−2(C5 +C6)θ−ε

)
V (42)

This completes the proof of theorem (2.1).

2.3 Some particular observers

Some particular expressions of the vectorK(x̃1k) that satisfy conditions (16) shall
be given and discussed in this section.
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2.3.1 Adaptive high gain observers

Consider the following expression ofK(x̃k):

KHG(x̃k) = kK(x̃k) (43)

wherek≥ 1
2

is a real number. One can easily check that expression (43) satisfies

conditions (16) . More specifically, the proposed observer withK(x̃k) specialized
as in (43) is in fact an adaptive version of the well known high gain state observer.

2.3.2 Adaptive sliding mode like observers

At first glance, the following vector seems to be a potential candidate for the ex-
pression ofK(x̃k):

K(x̃k) = ksign(̃xk) (44)

wherek> 0 is a real number and ’sign’ is the usual sign function. Indeed, condition
(16) is trivially satisfied by (44). However, expression (44) cannot be used due the
discontinuity of sign function. Indeed, such discontinuity hampers the applicability
of the Lyapunov approach used throughout the proof. In order to overcome this
difficulty, one shall use continuous functions which have similar properties that
those of the sign function. Of practical importance, these functions are widely
used when implementing sliding mode observers. Indeed, consider the following
function:

KTanh(x̃k) = kTanh(̃xk) (45)

whereTanhdenotes the hyperbolic tangent function andk > 0 is a real number.

It is easy to see that conditions (16) is satisfied for relatively high values ofk.

Similarly to the hyperbolic tangent function, one can easily check that the inverse
tangent functionKArcTan(x̃k), the inverse sinus functionKSinh(x̃k), etc., also consti-
tute valid expressions forK(x̃k). Besides, one can consider new valid expressions
for K(x̃k), for example by addingKTanh(x̃k) to KHG(x̃k).

3 Conclusion

In this paper, we have discussed an adaptive observer for a class of MIMO uni-
formly observable nonlinear systems. A global exponential adaptive observer has
then been proposed for these classes of systems. The gain of the parameter adap-
tation of the proposed observers involves a design function satisfying some mild
conditions that have been given. Of fundamental importance, the global exponen-
tial convergence of these observers was shown to be guaranteed under the well
known persistent excitation condition.
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